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Abstract—An azacrown system has been developed for selective membrane binding of phosphatidylinositol-4,5-bis(phosphate) rec-
ognition. Neutral and cationic forms of the metacyclophane macrocycles have been synthesized by divergent routes in acceptable
yields. Such diversity will be useful in identifying anion receptors that operate best at membrane interfaces.
� 2007 Elsevier Ltd. All rights reserved.
Generation of molecular receptors for biologically
relevant anions generally falls into two broad areas:
charged receptors1 that provide complementary electro-
static or metal–ligand interactions and neutral recep-
tors2 that utilize hydrogen bonding and/or ion-dipole
attraction to bind their guests. Recognition of anions
in biological systems is inherently more difficult than
cation recognition due to the ubiquitous nature of
negatively charged species at physiologic pH and the
structural complexity of anions such as polyphosphates
relative to simple, spherical cations such as sodium,
potassium, and calcium. The entropic cost for binding
the former class is more expensive due to additional
degrees of freedom that must be restricted in these
systems. Additionally, anions are much larger and
generally have a more diffuse charge compared to cat-
ions. This demands a higher degree of design effort nec-
essary to make receptors complementary to a specific
anion target. Lehn’s pioneering work on azacrowns
showed the advantage of such preorganization in that
these systems not only bind di- and triphosphates, but
also catalyze the hydrolysis of these species.3 Nature
offers us the most selective receptors of biological
anions as these macromolecules are able to overcome
free energy lost upon dehydrating an anion with
perfectly complementary binding sites.

We are interested in developing membrane-anchored
receptors for phosphatidylinositol and its derivatives
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(these include the lipoarabinomannan (LAM) of Myco-
bacterium tuberculosis and the lipophosphoglycan
(LPG) of Leishmania protozoa) as part of a two-pronged
approach toward developing receptors for these glyco-
conjugates4 to be used in drug targeting5 toward their
respective organisms. We are more broadly concerned
with use of boronates in receptors for cell-surface carbo-
hydrates,6 inositols,7 and a-hydroxycarboxylic acids.8

Additionally, we are interested in studying both neutral
and cationic receptors for the important second messen-
ger phosphatidylinositol-4,5-bis(phosphate) using an
azacrown core structure described here.

Our complete receptor design is shown in Figure 1. The
azacrown is oriented symmetrically to charge balance
the 4,5-bis(phosphate) while placing the aromatic ring
beneath the hydrophobic face (composed of three axial
hydrogens) of the inositol ring.9 This symmetry element
in the receptor reduces the entropic penalty of binding
as interaction with either face of the benzene ring will
situate its substituents identically. Anslyn has shown
that the hexa-anion inositol 1,4,5-tris(phosphate) binds
robustly to a hexaguanidium receptor on an aromatic
core.10 One binding element that can differentiate
PIP2 from other phosphorylated inositols, specifically
those with phosphates at C-3, is a boronic acid. Revers-
ible covalent binding to cis-vicinal diols has made boro-
nic acids an important class of artificial carbohydrate
receptors.11 The boron may also interact with a phos-
phate oxygen at C1 in a manner similar to that
observed with the N-acetyl group of sialic acid upon
boronate binding of its glycerol tail.12 As early
as 1980, it was established that boronates had an
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Scheme 1. Synthesis of neutral, cationic, and ‘mixed’ azacrown templates.
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Figure 1. PIP2 receptor with hydrophobic (red) and hydrophilic (blue)
recognition components.
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appreciable affinity for cell surfaces.13 Liposomes
loaded with boronates have improved affinity for eryth-
rocytes relative to those without.14 Wang has reported
development of bis(boronates) whose affinity has been
tuned to bind sialyl Lewis X on the cell surface.6b Cou-
pling boronates with cationic groups can greatly en-
hance the affinity of a receptor for a desired target.15

By positioning a six-membered aromatic template be-
neath the cyclohexyl ring of the target guest, it is read-
ily identifiable where addition of a hydrophobic group
(‘R’) is necessary in order to orient our receptor at
the membrane interface to bind PIP2. Synthesis of this
core azacrown template in both neutral and cationic
forms, as well as a mixture of these two types, is deline-
ated in Scheme 1.

First, attempts were made to couple 1 with unprotected
triethylenetetramine (2) by taking advantage of the meta
disposition of the phenylene linker in the azacrown tar-
get structures. By forming an amide bond with a pri-
mary amine in 2, cyclization through a second amide
bond formation should be favored at the distal primary
amine to provide 3 as the major product. Cyclization at
an internal secondary amine to yield a 12-membered
macrocycle was expected to be disfavored due to ring
strain (compared to the 15-membered ring in 3) and dis-
tortion of both amide conformations. Indeed, slow
addition of 2 to a solution of 1 and EDC in CHCl3
yielded 3 in modest yield (23%). This macrocycle con-
tains a mixture of both neutral and cationic anion-bind-
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ing functionality in the pairs of amides and amines. As
the nitrogen atoms closest to the aromatic ring of the
receptor will be nearer the membrane interface if the
proposed binding model is correct, neutral groups
may interact with the phosphates as effectively as
charged species. This system seemed a useful synthetic
precursor to the fully cationic azacrowns; however,
attempts to selectively (to furnish 4) or globally reduce
this macrocycle to the target structures met with only
limited success. Unfortunately, 3 decomposed slowly
in air to brown biproducts that were not identified
and this severely compromised its usefulness as a syn-
thetic intermediate.

Next, an alkylative macrocyclization route based on lit-
erature precedent was attempted with dibromide 516

and tetratosylate 617 that produced a reasonable yield
of the target compound 7 (67%) and the simplified
structure 817 (65%) from a,a 0-dibromo-m-xylene. This
first of our desired core structures contain a nitrogen
functionality that harbors no hydrogens capable of
hydrogen bonding anions such as phosphates, but the
strong dipole of the sulfonamides may still bind PIP2

at membrane interfaces. It will be interesting to com-
pare binding of this neutral compound in relation to
the free amine structures described below. Deprotec-
tion of this compound under a variety of conditions
(e.g., HBr/HOAc,18 sodium napthalide19) and tempera-
tures produced only disappointing conversion to the
cationic azacrown. Harsher conditions produced inex-
tractable mixtures, while milder conditions provided
limited deprotection. For this, an alternate protecting
group strategy was explored using phosphonamide
9.20a

Reaction of 9 with a,a 0-dibromo-m-xylene furnished 10
and the deprotection now proceeded smoothly with
HCl/dioxane to generate the second target core struc-
ture 11 (33% for two steps).20 Thus, the framework is
in place to generate families of neutral and cationic
receptors for membrane-sequestered phosphoinositides.
Whether any of these azacrowns alone have apprecia-
ble affinity for inositol phosphates remains to be deter-
mined. At present there are still no de novo synthetic
receptors capable of selective recognition of PIP2 at
membrane interfaces, but the work described here is
being applied to this end. Such a compound will be
useful in dissecting the intricacies of complex cell-sig-
naling pathways where PIP2 occupies a crucial message
branch point. It will provide complementary informa-
tion to signal disruption by polycations, such as neo-
mycin, whose affinity for PIP2 and IP3 is less
discretionary.
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